首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   0篇
航空   13篇
航天技术   16篇
航天   26篇
  2019年   1篇
  2018年   3篇
  2014年   3篇
  2013年   4篇
  2012年   1篇
  2011年   10篇
  2010年   2篇
  2009年   3篇
  2008年   2篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2004年   6篇
  2003年   3篇
  2002年   1篇
  2000年   1篇
  1998年   2篇
  1996年   1篇
  1992年   1篇
  1987年   2篇
  1977年   1篇
排序方式: 共有55条查询结果,搜索用时 31 毫秒
1.
Emergence of a Habitable Planet   总被引:2,自引:0,他引:2  
We address the first several hundred million years of Earth’s history. The Moon-forming impact left Earth enveloped in a hot silicate atmosphere that cooled and condensed over ∼1,000 yrs. As it cooled the Earth degassed its volatiles into the atmosphere. It took another ∼2 Myrs for the magma ocean to freeze at the surface. The cooling rate was determined by atmospheric thermal blanketing. Tidal heating by the new Moon was a major energy source to the magma ocean. After the mantle solidified geothermal heat became climatologically insignificant, which allowed the steam atmosphere to condense, and left behind a ∼100 bar, ∼500 K CO2 atmosphere. Thereafter cooling was governed by how quickly CO2 was removed from the atmosphere. If subduction were efficient this could have taken as little as 10 million years. In this case the faint young Sun suggests that a lifeless Earth should have been cold and its oceans white with ice. But if carbonate subduction were inefficient the CO2 would have mostly stayed in the atmosphere, which would have kept the surface near ∼500 K for many tens of millions of years. Hydrous minerals are harder to subduct than carbonates and there is a good chance that the Hadean mantle was dry. Hadean heat flow was locally high enough to ensure that any ice cover would have been thin (<5 m) in places. Moreover hundreds or thousands of asteroid impacts would have been big enough to melt the ice triggering brief impact summers. We suggest that plate tectonics as it works now was inadequate to handle typical Hadean heat flows of 0.2–0.5 W/m2. In its place we hypothesize a convecting mantle capped by a ∼100 km deep basaltic mush that was relatively permeable to heat flow. Recycling and distillation of hydrous basalts produced granitic rocks very early, which is consistent with preserved >4 Ga detrital zircons. If carbonates in oceanic crust subducted as quickly as they formed, Earth could have been habitable as early as 10–20 Myrs after the Moon-forming impact.  相似文献   
2.
A strategy is being developed whereby the current set of internationally standardized space data communications protocols can be incrementally evolved so that a first version of an operational "Interplanetary Internet" is feasible by the end of the decade. This paper describes its architectural concepts, discusses the current set of standard space data communications capabilities that exist to support Mars exploration and reviews proposed new developments. We also speculate that these current capabilities can grow to support future scenarios where human intelligence is widely distributed across the Solar System and day-to-day communications dialog between planets is routine.  相似文献   
3.
Kevin Madders  Jan Wouters   《Space Policy》2003,19(1):155-46
Despite some impressive programmes, Europe has not yet succeeded in forging a coherent space policy and, as a result, has not achieved its full potential in this field. As efforts to formulate a more comprehensive policy intensify, a series of workshops has been initiated in order to provide an independent platform, allowing broad participation, for discussion of the issues. This article describes the rationale behind the process and the structure of the workshops and reports on the highlights of the first workshop, examining the fundamental questions involved. The themes of forthcoming workshops are also presented.  相似文献   
4.
The Cassini Imaging Science Subsystem (ISS) is the highest-resolution two-dimensional imaging device on the Cassini Orbiter and has been designed for investigations of the bodies and phenomena found within the Saturnian planetary system. It consists of two framing cameras: a narrow angle, reflecting telescope with a 2-m focal length and a square field of view (FOV) 0.35 across, and a wide-angle refractor with a 0.2-m focal length and a FOV 3.5 across. At the heart of each camera is a charged coupled device (CCD) detector consisting of a 1024 square array of pixels, each 12 μ on a side. The data system allows many options for data collection, including choices for on-chip summing, rapid imaging and data compression. Each camera is outfitted with a large number of spectral filters which, taken together, span the electromagnetic spectrum from 200 to 1100 nm. These were chosen to address a multitude of Saturn-system scientific objectives: sounding the three-dimensional cloud structure and meteorology of the Saturn and Titan atmospheres, capturing lightning on both bodies, imaging the surfaces of Saturn’s many icy satellites, determining the structure of its enormous ring system, searching for previously undiscovered Saturnian moons (within and exterior to the rings), peering through the hazy Titan atmosphere to its yet-unexplored surface, and in general searching for temporal variability throughout the system on a variety of time scales. The ISS is also the optical navigation instrument for the Cassini mission. We describe here the capabilities and characteristics of the Cassini ISS, determined from both ground calibration data and in-flight data taken during cruise, and the Saturn-system investigations that will be conducted with it. At the time of writing, Cassini is approaching Saturn and the images returned to Earth thus far are both breathtaking and promising.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
5.
Today’s space debris environment shows major concentrations of objects within distinct orbital regions for nearly all size regimes. The most critical region is found at orbital altitudes near 800 km with high declinations. Within this region many satellites are operated in so called sun-synchronous orbits (SSO). Among those, there are Earth observation, communication and weather satellites. Due to the orbital geometry in SSO, head-on encounters with relative velocities of about 15 km/s are most probable and would thus result in highly energetic collisions, which are often referred to as catastrophic collisions, leading to the complete fragmentation of the participating objects. So called feedback collisions can then be triggered by the newly generated fragments, thus leading to a further population increase in the affected orbital region. This effect is known as the Kessler syndrome.  相似文献   
6.
Inflatable/deployable structures are under consideration as habitats for future Lunar surface science operations. The use of non-traditional structural materials combined with the need to maintain a safe working environment for extended periods in a harsh environment has led to the consideration of an integrated structural health management system for future habitats, to ensure their integrity. This article describes recent efforts to develop prototype sensing technologies and new self-healing materials that address the unique requirements of habitats comprised mainly of soft goods. A new approach to detecting impact damage is discussed, using addressable flexible capacitive sensing elements and thin film electronics in a matrixed array. Also, the use of passive wireless sensor tags for distributed sensing is discussed, wherein the need for on-board power through batteries or hardwired interconnects is eliminated. Finally, the development of a novel, microencapuslated self-healing elastomer with applications for inflatable/deployable habitats is reviewed.  相似文献   
7.
The Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) measures scattered sun light also in limb viewing mode (i.e. tangential to Earth’s surface and its atmosphere), which allows determining vertical profiles of atmospheric trace gases. First results on the retrieval of NO2, BrO and OClO profiles from the SCIAMACHY Limb measurements are presented and compared to independent satellite and balloon borne observations.  相似文献   
8.
In recent years Micro Systems Technology (MST) was introduced to manufacture miniaturized components for satellite subsystems, like small sensors, valves, micromotors, antennas and many more. These components can be used to build a new class of satellites weighing considerably less than 10 kg, with the capabilities comparable to present microsatellites. With the possibility of cheap mass production of such nanosatellites new applications become possible. However, the construction of very small satellites is connected with problems concerning launch, orbit control and, deorbiting. Furthermore the reduction of size creates certain limits for power consumption, data rates and optical resolutions which have to be carefully considered.  相似文献   
9.
The Voyager Photopolarimeter Experiment is designed to determine the physical properties of particulate matter in the atmospheres of Jupiter, Saturn, and the Rings of Saturn by measuring the intensity and linear polarization of scattered sunlight at eight wavelengths in the 2350–7500 Å region of the spectrum. The experiment will also provide information on the texture and probable composition of the surfaces of the satellites of Jupiter and Saturn and the properties of the sodium cloud around Io. During the planetary encounters a search for optical evidence of electrical discharges (lightning) and auroral activity will also be conducted.  相似文献   
10.
The recent interest in the use of ultrasound (US) to detect pneumothoraces after acute trauma in North America was initially driven by an operational space medicine concern. Astronauts aboard the International Space Station (ISS) are at risk for pneumothoraces, and US is the only potential medical imaging available. Pneumothoraces are common following trauma, and are a preventable cause of death, as most are treatable with relatively simple interventions. While pneumothoraces are optimally diagnosed clinically, they are more often inapparent even on supine chest radiographs (CXR) with recent series reporting a greater than 50% rate of occult pneumothoraces. In the course of basic scientific investigations in a conventional and parabolic flight laboratory, investigators familiarized themselves with the sonographic features of both pneumothoraces and normal pulmonary ventilation. By examining the visceral–parietal pleural interface (VPPI) with US, investigators became confident in diagnosing pneumothoraces. This knowledge was subsequently translated into practice at an American and a Canadian trauma center. The sonographic examination was found to be more accurate and sensitive than CXR (US 96% and 100% versus US 74% and 36%) in specific circumstances. Initial studies have also suggested that detecting the US features of pleural pulmonary ventilation in the left lung field may offer the ability to exclude serious endotracheal tube malpositions such as right mainstem and esophageal intubations. Applied thoracic US is an example of a clinically useful space medicine spin-off that is improving health care on earth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号